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A B S T R A C T   

The aim of this study was to evaluate the ability of a miniaturized near-infrared spectrometer to predict chemical 
parameters, technological and quality traits, fatty acids and minerals in intact Longissimus thoracis and Trapezius 
obtained from the ribs of 40 Charolais cattle. Modified partial least squares regression analysis to correlate 
spectra information to reference values, and several scatter correction and mathematical treatments have been 
tested. Leave-one-out cross-validation results showed that the handheld instrument could be used to obtain a 
good prediction of moisture and an approximate quantitative prediction of fat or protein contents, a*, b*, shear 
force and purge loss with coefficients of determination above 0.66. Moreover, prediction models were satis
factory for proportions of MUFA, PUFA, oleic and palmitic acids, for Fe and Cu contents. Overall, results 
exhibited the usefulness of the on-line miniaturized tool to predict some beef quality traits and the possibility to 
use it with commercial cuts without sampling, carcass deterioration nor grinding and consequent meat products' 
loss.   

1. Introduction 

Quality characteristics such as color and drip loss or exudation along 
with nutritional value, convenient price and authenticity are the main 
criteria consumers rely on when they buy meat (ElMasry, Sun, & Allen, 
2011; Grunert, Bredahl, & Brunsø, 2004; Monin, 1998). Since consumer 
perception itself impacts on meat industry profitability (Troy & Kerry, 
2010), its efforts are focused on meeting consumer requirements of 
consistent quality and thus deliver high eating quality (Liu et al., 2020) 
and healthy products (Scollan et al., 2014). A more widespread 
knowledge of health risks (McAfee et al., 2010) and a greater interest in 
the healthiness of foods made it essential to inform consumers of the 
fatty acid (FA) and mineral profile. To reduce a possible negative impact 
on health, a higher intake of polyunsaturated FAs and a lower intake of 
saturated FAs are recommended (Scollan et al., 2014); furthermore, red 
meat is a source of iron, essential for many cellular processes and for 
carrying oxygen in the blood as constituent of hemoglobin (McAfee 
et al., 2010), zinc biologically important as catalyst, structural, and 
regulatory ion (Chasapis, Spiliopoulou, Loutsidou, & Stefanidou, 2012), 
and other minerals in smaller amount and their presence need to be 
guaranteed avoiding deficiencies. 

The reference procedures carried out to assess meat quality traits 
consist of chemical and instrumental methods which are time 
consuming, expensive and sometimes destructive (Prieto et al., 2014). 
Therefore, there is a constant need for reliable quality evaluation tech
niques that can be useful and more easily applicable on a large-scale. A 
reliable method, which is also rapid, cheap, non-destructive, and suit
able for industrial application to obtain prediction of quality and 
nutritional parameters is near-infrared spectroscopy (NIRS). Due to its 
efficiency and simplicity, it is the most widely used spectroscopic 
technique for foodstuff analysis at- and in-line; however, nowadays the 
development of miniaturized tools has led to an increasing use of 
handheld instruments (Kademi, Ulusoy, & Hecer, 2018) which also offer 
an advantage in terms of on-line large-scale application. 

Several studies demonstrated the ability of NIRS technology to pre
dict moisture, protein and fat contents using benchtop equipment 
(Prevolnik, Škrlep, Škorjanc, & Čandek-Potokar, 2010; Prieto et al., 
2014; Su et al., 2014) and its increasing use as food analytical tool in 
meat industries for routine controls (Alomar, Gallo, Castañeda, & 
Fuchslocher, 2003; Balage, da Luz e Silva, Gomide, de Bonin, & Figueira, 
2015; Kademi et al., 2018). However, unsatisfactory results to be used 
for screening purposes in the meat industry have been obtained for the 
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prediction of quality attributes such as color, pH, and tenderness 
(Andrés et al., 2008; Prieto, Andrés, Giráldez, Mantecón, & Lavín, 
2008). In fact, according to Williams (2014) residual predictive devia
tion (RPD) should be above 2.4 to indicate the ability of NIRS prediction 
models to quantify the parameters or at least discriminate between high 
and low concentrations, even if the equation is not accurate enough to 
be used as a substitute of the reference method. Moreover, in the liter
ature there is a number of studies in which FAs are predicted in beef 
muscles using NIR benchtop spectrometers (Andueza et al., 2019; 
Giaretta et al., 2019; Realini, Duckett, & Windham, 2004; Sierra et al., 
2008). Whereas, NIRS can predict mineral contents with difficulty, since 
these minerals have no specific absorption bands in the infrared region 
unless they are part of organic complexes (Büning-Pfaue, 2003; Goi, 
Manuelian, Currò, & De Marchi, 2019). However, a limitation to the use 
of instruments which work on-line is that this approach requires the 
samples to be transported to a laboratory and processed before the 
acquisition of spectra. On the other hand, in the last decade several 
portable tools that work on-line became widely used; in fact, their uti
lization in the abattoir avoids the transportation and processing of 
samples, whereas the application of portable NIR spectrometers at 
market level can allow for the classification of food products and their 
authentication (Nolasco Perez et al., 2018). However, the limitations are 
their size, which does not allow an easy spectra collection along the 
production chain (De Marchi, 2013), and that spectra may be highly 
variable compared to the benchtop systems, likely caused by a lack of 

standardization in the spectra collection procedure. The purpose of the 
present study was to assess the reliability of NIRS prediction models for 
protein, fat, FA and mineral contents, pH, color, purge loss, and shear 
force (SF), from spectra collected through a cheap and web-based 
wireless handheld instrument designed for consumer use which could 
ensure a quicker and more practical use of this technology on a large 
scale. 

2. Materials and methods 

2.1. Samples 

This study was approved by the Ethical Committee for the Care and 
Use of Experimental Animals of the University of Padova, Italy (approval 
no. 74/2018) and was conducted in accordance with Italian law 
(Decreto legislativo no. 26/2014) and EU Directive 2010/63/EU on the 
protection of animals used for scientific purposes. 

Samples used in the present study were a part of a study carried out 
on more than 1200 Charolais cattle that entered five commercial 
specialized beef fattening farms associated to a cooperative of beef 
producers (AZoVe) located in the Veneto region (Cittadella, Italy) be
tween July 2018 and August 2019. A total of 40 rib cuts taken at the 
level of the 5th rib were collected from 40 Charolais beef cattle that were 
born between October 2017 and December 2018 and started the 
fattening cycle between October 2018 and August 2019. All the animals 

Fig. 1. Graphic representation of the average NIR raw spectra collection procedure through Bluetooth connection to smartphone application.  

Fig. 2. Average raw spectra of beef collected using near-infrared spectroscopy according to the muscle type: Longissimus thoracis (n = 80) and Trapezius (n = 40).  
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were slaughtered between June and October 2019 at an average live 
body weight of 650.85 ± 101.91 kg, age at slaughter of 531 ± 46.2 days, 
and average carcass weight of 388.04 ± 67.86 kg. Immediately after the 
cutting phase (24 h post-mortem), the ribs were vacuum-packed and 
transported to the food laboratory of the Department of Agronomy, 
Food, Natural resources, Animals and Environment of the University of 
Padova (Legnaro, Italy) where they were weighed and stored at 4◦C until 
the analyzes were carried out 48 h after slaughter. 

For each sample, a second weight was recorded following the 
removal of the packaging and the exudates from the surface in order to 
calculate the purge losses as weight loss during the storage for 24 h due 
to the release of fluid from tissues (James & James, 2010). The weight 
loss was computed as the difference between the weight of the rib at 
arrival and the weight after 24 h of storage at 4◦C and then expressed as 
percentage loss based on the initial weight. The cutting was then carried 
out with the aim of isolating the Longissimus thoracis (LT) and Trapezius 
muscles. 

2.2. Near-infrared spectroscopy analysis 

After the isolation of the muscles, 120 spectra, 40 LT at day 1, the 
same 40 LT after 7 days of aging, and 40 Trapezius at day 1 from the 
same animals, were collected with SCiO (Consumer Physics Inc., Tel 
Aviv, Israel), the handheld wireless instrument that operates in reflec
tance mode in the NIR region between 740 and 1070 nm of wavelength 
at intervals of 1 nm (Figs. 1 and 2). The decision to include both types of 
muscles and different aging times was due to the attempt to detect and 
involve greater variability of the data in order to obtain more robust 
calibrations. To reduce the occurrence of abnormal values, each spec
trum was calculated as the average of 5 sub-spectra recorded applying 
the scanning head of the instrument at 1 cm over the surface of the 
muscle at different points. Subsequently, spectra were collected using 
Mosaic software (FOSS, Hillerød, Denmark) and converted to absor
bance (log(1/reflectance)) to develop the prediction models. 

2.3. Laboratory analyses 

A total of 80 muscles sampled at day 1, LT (n = 40) and Trapezius (n 
= 40), were sliced perpendicularly to muscle fiber direction to obtain a 
total of 120 samples (2 cm thick, 2 slices of LT and a single slice of 
Trapezius), and measurements of pH, color traits expressed as lightness 
(L*), redness (a*) and yellowness (b*), and Allo-Kramer SF were 
recorded on all the samples the first day of analysis. A single slice from 
each LT was stored at 4◦C and analyzed for the same traits after 7 days of 
aging. The pH was detected using a model HD2107.2 Delta Ohm (Delta 
Ohm, Padova, Italy) pH-meter with a high precision (± 0.002 pH units) 
and the final value was obtained as the average of 5 measurements taken 
at different points on the muscles' surface. 

The L*, a*, and b* color indexes (Commission International de 
l'Eclairage, 1976) were measured after the muscles had been exposed to 
air for an hour using a Minolta colorimeter (CM-600d, Konica-Minolta 
Sensing Inc. Ramsey, NJ). Five measurements were performed at 
different points on the muscles' surface and averaged to obtain a single 
value for each sample. 

Shear force (N/g of raw meat) was measured cutting across the fiber 
axis of each muscle slice (1 × 7 × 3 cm) in single for Trapezius and in 
duplicate for LT using a LS5 Single Column Bench Mounted (AMETEK 
Lloyd Instruments Ltd., West Sussex, UK) equipped with a 10-blade (8 ×
7 cm) Allo-Kramer shear compression cell using a 500-kg load cell with a 
cutting speed of 500 mm/min and blade thickness of 22 mm; data was 
integrated using NEXYGEN PLUS 3 software (AMETEK Lloyd In
struments Ltd., West Sussex, UK). 

Only LT were ground with a Grindomix mill (Retsch Grindomix 
GM200; Retsch GmbH & Co, Haan, Germany) and 10 g of each sample 
was freeze-dried to perform the quantification of mineral and FA con
tents. Major mineral (Ca, P, Mg, Na, K, and S) and trace mineral (Al, B, 

Ba, Cr, Cu, Fe, Li, Mn, Ni, Pb, Si, Sn, Sr, Ti, and Zn) analysis was per
formed by mineralization of 0.30 g of tissue in closed vessel with 
hydrogen peroxide and nitric acid (Merck Chemicals GmbH, Darmstadt, 
Germany) in a microwave digestion system (Ethos 1600 Milestone S.r.l., 
Sorisole, Bergamo, Italy). Dissolved samples were diluted in ultrapure 
water to obtain a final volume of 25 mL, and then concentrations were 
quantified with inductively coupled plasma optical emission spectrom
etry (ICP-OES) Ciros Vision EOP (Spectro Analytical Instruments GmbH, 
Kleve, Germany). All instrument operating parameters were optimized 
for nitric acid solution and the conditions were 2 mL/min of sample 
uptake rate, 1400 W plasma power, coolant gas flow 12 L/min, auxiliary 
flow 0.80 L/min, nebulizer flow 0.90 L/min, and integration time of 28 
s. Calibration standards for each mineral were prepared from mono
element solutions (Inorganic Ventures, Christiansburg, VA, USA) with 
5% nitric acid and 65% Suprapur at concentration of 0, 1, 2, 5, 10, 20, 
50, and 100 mg/L. The ICP-OES determined Ca at 315.887 nm, P at 
177.495 nm, Mg at 285.213 nm, Na at 589.592 nm, K at 766.941 nm, S 
at 182.034 nm, Al at 167.078 nm, B at 208.959 nm, Ba at 455.404 nm, 
Cr at 205.618 nm, Cu at 324.754 nm, Fe at 259.941 nm, Li at 670.780 
nm, Mn at 257.611 nm, Ni at 231.604 nm, Pb at 220.353 nm, Si at 
251.612 nm, Sn at 189.991 nm, Sr at 407.771 nm, Ti at 334.941 nm, and 
Zn at 213.856 nm. 

Accelerated solvent extraction method was performed following the 
Dionex Application Note n.334 using ASE 200 (Dionex Corporation, 
Sunnyvale. CA, USA) with 22 mL stainless steel extraction cells. Freeze- 
dried samples of 2.5 g and petroleum ether as solvent were used for lipid 
extraction. Subsequently, 40 mg of the obtained extract was methylated 
following the procedure described by Christie (1982): fatty acid methyl 
ester solution was centrifuged at 693 ×g for 10 min at 10◦C, and 
transferred to a 1.5 mL vial for gas chromatographic analysis. An Agilent 
7820A GC System (Agilent Technologies, Santa Clara, CA, USA) was 
equipped with an automatic Omegawax® capillary GC column (24136 
Supelco; Sigma Aldrich, Castle Hill, Australia) of 30 m length, 0.25 mm 
of inner diameter, and 0.25 mm film thickness. The working conditions 
were: hydrogen flow rate of 1.4184 mL/min, detector temperature set at 
250◦C, oven temperature initially held at 50◦C for 2 min, and then 
increased at a rate of 4◦C/min to 220◦C held for 17.5 min. The individual 
FAs were identified by comparing the retention time of each with that of 
a standard FA mix. Finally, FAs were expressed as absolute concentra
tion (g/100 g fresh meat) through the following formula: FA (% of total 
FA) × total lipids × 0.916 (Greenfield & Southgate, 2003). 

To calculate chemical parameters (i.e., moisture, fat, and protein 
contents), the same meat slices were ground, and 100 g samples were 
analyzed using the NIR spectrometer FoodScan (FOSS, Hillerød, 
Denmark) as reference method since this NIR equipment has been 
approved by AOAC (2007) for the commercial analysis of moisture, fat 
and protein in meat and meat products using FOSS prediction models 
(Prieto et al., 2009). The determination was carried out using com
mercial global FOSS calibrations pre-installed in the instrument, which 
have been validated by Anderson (2007) against chemical analysis 
methods officially approved such as AOAC Official Methods for fat 
(960.39) and protein (992.15). 

2.4. Chemometric analysis 

Spectral and reference data were used to develop prediction equa
tions for moisture, protein, fat, FA and mineral contents, pH, color, 
purge loss, and SF. Calibration models were performed using WinISI 4 
software (Infrasoft International, Port Matilda, PA, USA) through 
modified partial least squares (mPLS) regression analysis to correlate 
spectral information to reference values using the complete dataset. The 
applied scatter correction to the raw spectra were: no correction (None), 
detrending (D), standard normal variate (SNV), standard normal variate 
and detrending (SNV + D), and multiplicative scatter correction (MSC) 
to reduce noise effect. Each pre-processing technique was combined 
with derivative mathematical treatments: 0,0,1,1; 1,4,4,1; 1,8,8,1; 
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2,5,5,1; and 2,10,10,1. In particular, the first digit is the number of the 
derivative, the second is the gap over which the derivative is calculated, 
the third is the number of data points in the first smoothing, and the 
fourth is the number of data points in the second smoothing (Shenk, 
Westerhaus, & Abrams, 1989). 

To increase the accuracy of the calibration, spectral outliers were 
eliminated using the Mahalanobis distance (Global H > 3.0) and sub
sequently, after the mPLS regression analysis, data underwent three 
passes of outliers' elimination to build the final prediction model setting 
the critical T-statistic value to ±2.5 standard error, therefore removing 
samples for whose predicted values exceeded ±2.5 standard error of the 
reference values. Prediction models were then tested performing a 
leave-one-out cross-validation, therefore a training set was created 
excluding randomly a single spectrum from the entire dataset, calibra
tion calculations were performed, and then prediction equations were 
tested to the excluded sample. The procedure was repeated until all the 
samples have been left out once from the training test and used as 
validation set. The best models were assessed based on the number of 
latent factors (LF) which minimized the root-mean-square error (RMSE) 
of cross-validation (Simoni, Goi, De Marchi, & Righi, 2021), the lower 
standard error of calibration (SEC) and of cross-validation (SECV), the 
greater the coefficient of determination of calibration (R2

C) and of cross- 
validation (R2

CV) and the greater the residual predictive deviation of 
cross-validation (RPD), calculated as the ratio of SD to SECV (Williams & 
Sobering, 1993). The interpretation of R2

CV was based on Karoui et al. 
(2006) and that of RPD was based on Williams (2014). 

3. Results and discussion 

3.1. Chemical composition 

Summary statistics of meat quality traits are shown in Table 1. The 
coefficient of variation (CV) varied from 16.7% to 68.3% for fat, color 
parameters a* and b*, SF, and purge loss, whereas it was lower for 
moisture (CV = 2.1%), protein (CV = 4.6%), pH (CV = 1.5%) and L* 
(CV = 6.8%). Purge loss' CV was found to be high because of the pres
ence in each rib of different muscle types. In fact, post-mortem proteol
ysis, intramuscular fat or marbling, connective tissue, and the 
contractile state of the muscle could contribute to the difference in 
tenderness between different muscles within the same beef carcass 
(Belew, Brooks, McKenna, & Savell, 2003). Moreover, differences in 
collagen characteristics, sarcomere length of the myofiber, fiber size, 
and fiber type composition could affect the water loss (Abdullah, Qud
sieh, & Nusairat, 2011). In general, the high variability of the data is a 
key point to develop robust calibration models (Alomar et al., 2006). 
However, low variability has been already confirmed by other authors 
for pH (Andrés et al., 2008; De Marchi, Penasa, Cecchinato, & Bittante, 
2013), protein content (Leroy et al., 2003), and L* (Page, Wulf, & 
Schwotzer, 2001). The most variable technological characteristic was 
the Allo-Kramer SF with the LT (30.65 N/g), as expected, more tender 

than the Trapezius (96.90 N/g) (Sullivan & Calkins, 2011), most likely 
due to the different location and function within the animal which in
duces differences in the proportions of the fiber types (Realini et al., 
2013). 

Descriptive statistics of fatty acids are reported in Table 2. Saturated 

Table 1 
Descriptive statistics of chemical composition and technological and quality 
traits in beef samples (n = 40 LT at day 1; n = 40 LT at day 7; n = 40 Trapezius at 
day 1).  

Traits Mean SD Minimum Maximum CVa 

Moisture content, % 68.67 1.47 65.32 71.36 2.1 
Fat content, % 4.10 1.75 1.24 8.97 42.6 
Protein content, % 22.01 1.01 19.81 24.30 4.6 
pH 5.61 0.08 5.46 5.81 1.5 
L* 40.26 2.73 33.29 46.94 6.8 
a* 18.81 3.14 12.97 28.40 16.7 
b* 12.60 2.89 7.85 21.70 23.0 
Shear force, N/g 52.66 35.96 12.55 182.18 68.3 
Purge loss, % 2.27 0.81 0.58 3.47 35.5  

a CV = coefficient of variation. 

Table 2 
Descriptive statistics of individual fatty acids, groups, and ratios in beef samples 
(n = 40 LT at day 1; n = 40 LT at day 7).  

Fatty acids, mg/100 g of 
fresh tissue muscle 

Mean SD Min Max CVa 

Groups      
SFAb 2213.29 740.55 767.06 4536.41 33.5 
MUFAc 1670.58 729.99 433.88 3677.14 43.7 
PUFAd 123.24 43.10 39.22 227.98 35.0 
BFAe 72.64 21.65 33.11 137.30 29.8 
CLAf 18.80 10.34 4.98 73.62 55.0 
n-6 89.80 37.05 13.53 171.04 41.3 
n-3 17.31 10.28 4.53 92.12 59.4 

Ratios      
PUFA/SFA 0.06 0.02 0.02 0.09 32.4 
n-6/n-3 5.95 2.72 0.81 15.65 45.8 

Major fatty acids      
C14:0 (myristic) 124.17 50.57 35.07 275.84 40.7 
C16:0 (palmitic) 1186.59 457.28 331.76 2382.73 38.5 
C16:1 n-9 97.20 68.07 3.63 290.00 70.0 
C17:0 40.12 19.71 0 101.20 49.1 
C18:0 (stearic) 828.38 237.54 385.51 1729.05 28.7 
C18:1 n-7c (vaccenic) 94.87 57.26 4.82 222.10 60.4 
C18:1 n-9 (oleic) 1558.20 692.55 427.88 3501.69 44.4 
C18:2 n-6 (linoleic) 82.66 37.55 7.64 168.08 45.4 

Minor fatty acids      
C6:0 0.84 1.22 0 10.62 144.7 
C8:0 1.18 2.19 0 17.99 185.4 
C10:0 3.02 1.62 0.50 13.29 53.8 
C12:0 2.64 2.73 0 19.36 103.4 
C13:0 1.15 2.55 0 21.99 222.5 
isoC14:0 2.57 0.93 0 6.22 36.3 
C15:0 17.09 4.66 7.75 32.36 27.3 
isoC15:0 6.63 2.24 2.84 18.38 33.8 
anteisoC15:0 8.05 3.37 0 25.69 41.9 
isoC16:0 8.76 3.78 0 20.55 43.2 
C16:1 n-7 (palmitoleic) 15.41 21.80 0.71 80.53 141.4 
C16:1 t 0.99 0.73 0 4.44 74.0 
C16:2 1.10 0.72 0 4.47 65.9 
isoC17:0 14.49 4.76 0.46 27.72 32.9 
anteisoC17:0 24.92 8.41 0 47.65 33.7 
C17:1 n-7 2.92 6.07 0 52.70 207.9 
C17:1 n-8 22.20 9.36 5.13 46.07 42.2 
isoC18:0 7.21 2.96 0 15.56 41.1 
C18:1 n-5 10.38 4.08 2.56 21.92 39.3 
C18:3 n-6 (γ-linolenic) 2.71 3.27 0.27 23.51 120.9 
C18:3 n-3 (α-linolenic) 8.71 4.38 0 27.83 50.2 
C18:4 n-3 5.43 4.36 0 20.35 80.4 
C19:0 1.66 1.48 0 7.29 89.2 
C20:0 (arachidic) 5.16 2.83 0.62 21.26 54.9 
C20:1 n-9 2.45 2.77 0 14.46 113.1 
C20:2 n-6 (eicosadienoic) 1.09 1.61 0 8.29 147.8 
C20:3 n-6 2.14 2.03 0 13.95 95.1 
C20:4 n-6 (arachidonic) 1.21 2.77 0 24.77 228.6 
C20:3 n-3 0.50 1.27 0 11.04 254.8 
C20:5 n-3 0.17 0.51 0 3.33 309.4 
C21:0 1.30 2.94 0 19.57 225.8 
C22:0 2.26 8.81 0 77.75 390.6 
C22:6 n-3 2.51 5.65 0 47.07 224.9 
C24:1 n-9 2.10 2.98 0 20.74 142.0 
CLA c9t11 16.39 7.73 1.34 38.01 47.1 
tt-CLA 2.41 4.54 0 35.60 188.5  

a CV = coefficient of variation; bSFA = saturated fatty acids (C6:0 + C8:0 +
C10:0 + C12:0 + C13:0 + C14:0 + C15:0 + C16:0 + C17:0 + C18:0 + C19:0 +
C20:0 + C21:0 + C22:0); cMUFA = monounsaturated fatty acids (C16:1 n-7 +
C18:1 n-9 oleic + C18:1 n-7c + C24:1 n-9); dPUFA = polyunsaturated fatty acids 
(C18:2 n-6 + C18:3 n-6 + C18:3 n-3 + C18:4 n-3? + C20:2 n-6 + C20:3 n-3 +
C20:3 n-6 + C20:4 n-6 + CLA c9t11 + tt-CLA); eBFA = branched fatty acids 
(isoC14:0 + isoC15:0 + anteisoC15:0 + isoC16:0 + isoC17:0 + anteisoC17:0 +
isoC18:0); fCLA = conjugated linoleic acids (CLA c9t11 + tt-CLA). 
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fatty acid was the most abundant group, including palmitic (C16:0) and 
stearic (C18:0) acids as the most abundant, followed by MUFA, in 
particular oleic (C18:1 n-9) acid among them which was the FA present 
in the greatest quantity overall. The same result has been previously 
described by other authors in different beef muscle types (Andueza et al., 
2019; Sierra et al., 2008). The average conjugated linolenic acid (CLA) 
content was an intermediate value between those reported in the cited 
studies, whereas branched fatty acid (BFA) content was greater but also 
more variable among samples. The CV ranged from 29.8% (BFA) to 
59.4% (n-3), assuring a good variability to perform predictions. Both the 
n-6 and n-3 contents were lower than that reported by Nuernberg et al. 
(2005). However, their ratio was similar to the average value measured 
in Longissimus muscle of German Simmental cattle fed with concentrate 
(Nuernberg et al., 2005). Moreover, PUFA and SFA contents expressed 
as a percentage of total FAs, 55.24% and 3.08%, respectively, were 
slightly higher but with the same ratio (0.06) compared to the results of 
Realini et al. (2004) in grain-fed beef. Overall, the major FAs were 
present in the same order of quantity described in the literature, with the 
exception of a study that reported a higher content of palmitic acid than 
oleic acid in Longissimus thoracis of yearling bulls (Sierra et al., 2008). 
Coefficients of variation of FAs ranged from 27.3% (C15:0) to 222.5% 
(C13:0) which is much more than other studies have shown (Andueza 
et al., 2019; Sierra et al., 2008). 

A total of 17 minerals, 6 major minerals and 11 trace minerals, were 

present in the samples in amount above the LOD and their descriptive 
statistics are shown in Table 3. All the major minerals quantified (Ca, P, 
Mg, Na, K, and S) and Cu, Fe, Mn, Si, and Zn among trace minerals were 
above the limit of detection (LOD) of the instrument expressed on fresh 
samples. On the other hand, the quantification of Al, B, Ba, Cr, Sr, and Ti 
was not possible for some samples in which the elements were below the 
LOD and for the same reason in almost all the samples Li, Ni, Pb, and Sn 
were not detectable. Thus, from this list of trace minerals, Al (n = 24), Li, 
Ni, Pb and Sn has been excluded from the calibration procedure because 
50 samples was considered a minimum for calibration selection 
(Windham & Coleman, 1989). The average mineral content was similar 
to that reported by Flowers et al. (2018) and Czerwonka and Szterk 
(2015) in beef Longissimus thoracis, with the exception of Fe which had a 
greater value in the latter study that may be due to a different feed 
administered and the different breed. However, the most abundant 
minerals were K and Zn among major and trace minerals, respectively, 
as previously reported in literature (Czerwonka & Szterk, 2015; 
Domaradzki, Florek, Staszowska, & Litwińczuk, 2016; Flowers et al., 
2018). 

3.2. Near-infrared predictions 

Statistics for prediction models of meat technological and quality 
traits are reported in Table 4. The number of latent factors considered 
ranged between 3 (L*) and 9 (moisture, fat and SF), and outliers were 
below 5.8% for all the parameters analyzed. The most used scatter 
correction was detrending (D) and second derivative as mathematical 
treatment, followed by first derivative. According to the interpretation 
of R2

CV of Karoui et al. (2006), the best prediction equation was devel
oped for moisture (R2

CV = 0.84; RPD = 2.48), which could give a good 
estimation of the reference value, followed by fat and SF, which both 
reached a R2

CV of 0.79 and RPD above 2 (Table 4). This result is in 
accordance to those obtained by Ripoll, Albertí, Panea, Olleta, and 
Sañudo (2008) in homogenized samples, who determined the tenderness 
using the Warner–Bratzler method, and could be due to the high vari
ability of the traits. The calibration model for protein had a lower R2

CV 
(0.66) than the other chemical variables and difficulties in predicting 
meat protein content have been previously stated by Ripoll et al. (2008), 
most likely because of the narrow protein range in bovine meat (Prieto, 
Andrés, Giráldez, Mantecón, & Lavín, 2006). Moreover, prediction 
equations for a*, b*, and purge loss had a lower accuracy but R2

CV was 
above 0.66 thus indicating the possibility of using these models for a 
rough screening although, because the R2

CV was below 0.82, they are 
not sufficiently accurate for a good prediction (Karoui et al., 2006). 
Similar results were obtained by De Marchi et al. (2013) for a* using 
visible/near-infrared spectroscopy in intact meat samples, but lower 
values for b* and purge loss, which was also reported by Cecchinato, De 
Marchi, Penasa, Albera, and Bittante (2011) and De Marchi, Berzaghi, 

Table 3 
Descriptive statistics of major and trace minerals in beef samples (n = 40 LT at 
day 1; n = 40 LT at day 7).  

Minerals Mean SD Min Max CVa 

Major minerals, 
mg/kg      

Ca 69.80 20.08 41.70 149.48 28.8 
K 4351.80 223.51 3804.53 4781.14 5.1 
Mg 230.96 10.33 201.15 258.10 4.5 
Na 466.60 37.34 402.44 598.85 8.0 
P 2078.01 89.94 1816.27 2314.87 4.3 
S 2200.52 85.41 2031.38 2412.82 3.9 
Trace minerals, μg/ 

kg      
Cr 67.66 18.17 35.34 128.37 26.9 
Cu 4504.44 8424.08 442.51 51,696.77 187.0 
Fe 14,990.22 2150.27 10,497.25 19,151.25 14.3 
Mn 74.70 15.28 45.82 115.11 20.5 
Zn 53,244.15 5594.80 43,412.82 67,914.82 10.5 
B 84.20 31.21 24.24 178.25 37.1 
Al 1608.13 3068.92 246.18 11,080.00 190.8 
Ti 91.36 92.42 20.49 440.55 101.2 
Si 2632.49 813.62 1423.05 5167.00 30.9 
Sr 39.15 9.97 20.08 56.53 25.5 
Ba 51.15 67.14 7.78 496.38 131.3  

a CV = coefficient of variation. 

Table 4 
Goodness of fit statistics of modified partial least squares regression models in leave-one-out cross-validation for chemical and technological beef traits developed using 
pocket-size handheld NIR spectrometer on intact samples (n = 120).  

Trait Scatter correctiona Mathb LFc outliers SEC
d R2

C
e SECV

f R2
CV

g RPDh 

Moisture SNV + D 0,0,1,1 9 4 0.53 0.87 0.60 0.84 2.48 
Fat MSCi 0,0,1,1 9 6 0.71 0.84 0.80 0.79 2.19 
Protein SNVj 2,10,10,1 6 3 0.50 0.76 0.59 0.66 1.72 
pH Dk 2,5,5,1 5 4 0.05 0.65 0.06 0.52 1.46 
L* None 1,4,4,1 3 3 1.78 0.56 1.88 0.51 1.43 
a* D 1,4,4,1 7 3 1.50 0.78 1.74 0.70 1.82 
b* D 2,5,5,1 4 3 1.31 0.80 1.47 0.74 1.98 
Shear force D 1,8,8,1 9 7 12.82 0.84 14.95 0.79 2.17 
Purge loss MSC 2,10,10,1 8 0 0.38 0.78 0.45 0.67 1.76  

a Scatter correction = pre-processing technique to reduce noise; bMath = mathematical treatment (first digit indicates the derivative treatment); cLF = number of 
modified partial least squares latent factors used to develop the calibration model; dSEC = standard error of calibration; eR2C = coefficient of determination of 
calibration; fSECV = standard error of cross-validation; gR2CV = coefficient of determination of cross-validation; hRPD = residual prediction deviation calculated as SD 
after outliers' removal/SECV; iMSC = multiplicative scatter correction; jSNV = standard normal variate; kD = detrending. 
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Boukha, Mirisola, and Gallo (2007) in minced samples. Protein cali
bration was found to have intermediate accuracy compared to other 
studies on ground sample (Cozzolino, De Mattos, & Martins, 2002; 
Cozzolino & Murray, 2002). Unsatisfactory predictions (R2

CV < 0.66; 
Karoui et al., 2006) were obtained for pH and L*, the less variable pa
rameters, and this result is confirmed by De Marchi (2013) for L*, but in 
contrast to those showed by Cozzolino and Murray (2002) for pH, whose 
samples were more variable and thus provided a greater range of values 
to develop a prediction model. 

The performance of NIRS prediction models for FAs, reported in 
Table 5, were obtained using the amount of FA instead of percentage 
basis, which was expected to correlate better to NIR data since the 

absorbance is based on the amount of molecular bonds (Prieto et al., 
2011). Outliers detected for FA groups were < 6.3% and LF ranged 
between 1 (PUFA and n-6) and 8 (SFA); the best prediction equations 
were developed for SFA (R2

CV = 0.82; RPD = 2.35) indicating that the 
model could provide a fairly good estimation of the parameter, and for 
MUFA (R2

CV = 0.75; RPD = 2.03) which reach an accuracy good for a 
rough screening in meat samples. In general, SFA and MUFA are better 
predicted than PUFA, in agreement with Mourot et al. (2015) and pre
diction models of the other groups have not provided satisfactory re
sults. Among major FAs, the best prediction models were developed for 
the most abundant palmitic (R2

CV = 0.82; RPD = 2.34) and oleic (R2
CV 

= 0.77; RPD = 2.10) acids followed by C16:1 n-9 (R2
CV = 0.69; RPD =

Table 5 
Goodness of fit statistics of modified partial least squares regression models in leave-one-out cross-validation for beef individual fatty acids, groups, and ratios 
developed using pocket-size handheld NIR spectrometer on intact samples (n = 80).  

Fatty acids Scatter correctiona Mathb LFc outliers SEC
d R2

C
e SECV

f R2
CV

g RPDh 

Groups          
SFA MSCi 0,0,1,1 8 5 0.27 0.87 0.32 0.82 2.35 
MUFA SNVj 2,5,5,1 3 4 0.31 0.81 0.35 0.75 2.03 
PUFA SNV 0,0,1,1 1 2 0.04 0.15 0.04 0.12 1.07 
BFA SNV 1,4,4,1 4 4 11.53 0.69 12.71 0.62 1.63 
CLA Dk 2,5,5,1 3 4 5.01 0.64 5.52 0.56 1.51 
n-6 SNV 0,0,1,1 1 2 34.95 0.12 35.37 0.08 1.05 
n-3 SNV + D 2,5,5,1 2 3 4.40 0.45 4.82 0.33 1.23 

Ratios          
PUFA/SFA None 2,5,5,1 2 2 0.02 0.30 0.02 0.18 1.11 
n-6/n-3 SNV 1,4,4,1 8 3 1.85 0.47 2.35 0.13 1.08 

Major fatty acids          
C14:0 SNV + D 1,8,8,1 5 3 26.17 0.70 29.37 0.62 1.64 
C16:0 SNV 0,0,1,1 9 4 155.90 0.88 193.95 0.82 2.34 
C16:1 n-9 MSC 2,5,5,1 2 4 31.08 0.74 33.62 0.69 1.81 
C17:0 SNV + D 1,8,8,1 5 11 6.84 0.75 7.98 0.65 1.71 
C18:0 SNV + D 1,4,4,1 7 2 118.66 0.75 150.42 0.60 1.59 
C18:1 n-7c D 1,4,4,1 9 2 27.71 0.77 37.35 0.57 1.54 
C18:1 n-9 SNV 2,5,5,1 3 4 282.97 0.82 318.92 0.77 2.10 
C18:2 n-6 SNV 0,0,1,1 1 2 35.41 0.12 35.81 0.09 1.05 

Minor fatty acids          
C6:0 MSC 2,5,5,1 2 13 0.20 0.47 0.22 0.36 1.26 
C8:0 SNV 0,0,1,1 8 6 0.27 0.60 0.30 0.49 1.41 
C10:0 SNV 2,10,10,1 2 3 0.85 0.43 0.92 0.32 1.22 
C12:0 D 2,10,10,1 2 26 0.87 0.45 0.96 0.32 1.23 
C13:0 MSC 2,10,10,1 5 21 0.22 0.64 0.29 0.38 1.28 
isoC14:0 MSC 1,4,4,1 3 5 0.64 0.21 0.68 0.11 1.07 
C15:0 MSC 1,8,8,1 5 3 3.07 0.57 3.53 0.42 1.32 
isoC15:0 SNV 0,0,1,1 6 5 1.09 0.55 1.19 0.47 1.38 
anteisoC15:0 D 0,0,1,1 8 8 1.55 0.33 1.75 0.13 1.08 
isoC16:0 MSC 1,4,4,1 3 8 2.14 0.48 2.33 0.38 1.28 
C16:1 n-7 None 2,5,5,1 5 7 6.85 0.89 8.62 0.82 2.36 
C16:1 t None 2,5,5,1 2 67 0.41 0.30 0.48 0.04 1.03 
C16:2 SNV + D 2,10,10,1 2 11 0.32 0.57 0.35 0.47 1.39 
isoC17:0 SNV 1,4,4,1 3 2 2.61 0.70 2.88 0.63 1.66 
anteisoC17:0 SNV + D 0,0,1,1 8 4 3.99 0.73 4.48 0.65 1.70 
C17:1 n-7 D 0,0,1,1 7 13 1.28 0.35 1.43 0.18 1.11 
C17:1 n-8 SNV + D 2,10,10,1 2 3 4.77 0.71 5.11 0.67 1.75 
isoC18:0 MSC 2,5,5,1 3 5 1.58 0.66 1.79 0.56 1.52 
C18:1 n-5 D 2,5,5,1 2 2 2.78 0.55 2.96 0.48 1.40 
C18:3 n-3 None 1,8,8,1 7 13 1.80 0.42 2.18 0.14 1.09 
C18:3 n-6 SNV 0,0,1,1 6 4 1.82 0.24 1.95 0.12 1.07 
C18:4 n-3 None 2,10,10,1 4 67 1.97 0.75 2.34 0.64 1.68 
C19:0 SNV 1,4,4,1 8 66 0.83 0.57 1.10 0.23 1.15 
C20:0 MSC 1,8,8,1 7 75 1.29 0.66 1.50 0.53 1.48 
C20:1 n-9 SNV + D 2,5,5,1 3 59 1.30 0.59 1.57 0.39 1.30 
C20:2 n-6 None 2,5,5,1 2 59 0.69 0.39 0.77 0.23 1.15 
C20:3 n-3 SNV 2,5,5,1 2 47 0.17 0.50 0.20 0.31 1.22 
C20:3 n-6 SNV 2,5,5,1 1 68 1.25 0.25 1.32 0.15 1.09 
C20:4 n-6 D 2,5,5,1 4 69 0.45 0.57 0.57 0.30 1.20 
C21:0 D 2,5,5,1 2 33 1.58 0.64 1.88 0.47 1.39 
C24:1 n-9 SNV 2,10,10,1 8 68 0.73 0.79 1.01 0.60 1.59 
CLA c9t11 SNV + D 2,10,10,1 2 76 4.81 0.58 5.17 0.51 1.44 
tt-CLA MSC 0,0,1,1 6 76 2.02 0.40 2.19 0.28 1.18  

a Scatter correction = pre-processing technique to reduce noise; bMath = mathematical treatment (first digit indicates the derivative treatment); cLF = number of 
modified partial least squares latent factors used to develop the calibration model; dSEC = standard error of calibration; eR2

C = coefficient of determination of cali
bration; fSECV = standard error of cross-validation; gR2

CV = coefficient of determination of cross-validation; hRPD = residual prediction deviation calculated as SD after 
outliers' removal/SECV; iMSC = multiplicative scatter correction; jSNV = standard normal variate; kD = detrending. 
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1.81), in accordance with Sierra et al. (2008) who used NIR trans
mittance spectroscopy, and Andueza et al. (2019) that obtain good re
sults also for stearic acid with visible/NIRS in reflectance mode. The best 
calibrations of minor FAs were obtained for C16:1 n-7 (R2

CV = 0.82; 
RPD = 2.36) and C17:1 n-8 (R2

CV = 0.67; RPD = 1.75). For all other FAs 
quantified in the study, including ratios calculated between groups, 
predictions were not considered satisfactory, which may be due to the 
low quantities or the moderate variability which makes the prediction in 
beef of minor FAs difficult (Andueza et al., 2019). In fact, this conclusion 
was also confirmed by other authors (De Marchi, Riovanto, Penasa, & 
Cassandro, 2012; Riovanto, De Marchi, Cassandro, & Penasa, 2012) 
using reflectance and transmittance NIRS, respectively. Some minor FAs 
were not predicted by NIRS because many samples did not contain them 
and therefore the dataset was too small to allow the development of 
calibrations. However, they were not excluded but used in groups or 
ratios. The low accuracy in predicting FAs may be also due to the narrow 
range of wavelength in which the instrument works (740–1070 nm), 
which does not include absorption bands related to C–H bonds (1100 
nm) linked to the presence of fat (Cecchinato et al., 2012). Moreover, 
since spectra were collected on intact muscles which could lack homo
geneity, as concluded by several studies whose results have been re
ported by Prieto, Pawluczyk, Russell Dugan, and Aalhus (2017), the 
prediction ability of the instrument might have been affected. Overall, 
among FAs' groups and ratios, the most used scatter correction was SNV 
and second or no derivative were the most selected options (Table 5). 

Cross-validation statistics for determination of minerals are shown in 
Table 6. Latent factors ranged from 3 (Mg and P) to 8 (Ca, K, and S) for 
major minerals, whereas from 1 (Cr) to 8 (Ba and Ti) for minor minerals; 
outliers were ≤ 11% for all the parameters, with exception for K 
(16.3%). The calibrations which allowed the most accurate predictions 
(greatest R2

CV) were developed mainly using the D scatter correction as 
reported by De Marchi et al. (2017) predicting Na content in processed 
meat, and SNV + D, and the second derivative as mathematical treat
ment. Prediction models for major minerals showed a R2

CV below the 
threshold of 0.66 to be considered good even just for carrying out a 
screening (Karoui et al., 2006) and thus they were not recommended for 
any kind of practical application. On the other hand, among minor 
minerals Cu (R2

CV = 0.76; RPD = 2.04) and Fe (R2
CV = 0.85; RPD =

2.58) were the parameters that reached the greatest accuracy, allowing 

for the former an approximate quantitative prediction and for the latter 
a good estimation of its content in any sample. A similar result for Fe 
content was obtained by González-Martıń, González-Pérez, Hernández- 
Méndez, and Alvarez-Garcıá (2002) in pork meat and the good accuracy 
could be due to the binding of the mineral to proteins that, as organic 
molecules, are detected by NIRS. Viljoen, Hoffman, and Brand (2007) 
predicted Cu content in mutton beef but did not observed a similar ac
curacy, with a coefficient of determination <0.66 and therefore below 
the value to be assessed as adequate (Karoui et al., 2006), probably 
because of the lower variability of the content for this element compared 
to this study. 

For Al, Li, Ni, and Pb contents, it was not possible to develop cali
bration equations since there were few or no samples in which the ele
ments were present above the LOD. Overall, the unsatisfactory 
performances of NIRS prediction models for these minerals were most 
likely due to the low contents of these components, the lack of specific 
absorption bands in the near-infrared region (Goi et al., 2019), and the 
narrow range of wavelengths in which the instrument works (Goi, 
Simoni, Righi, Visentin, & De Marchi, 2020). In fact, since the absor
bance depends on the number of molecular bonds, and a low amount of 
the element is reflected in fewer molecular bonds that can be excited, it 
is difficult to predict minerals that are generally present in low quanti
ties. Moreover, minerals can be detected only if they are linked to 
organic complexes and chelates, or if they interfere with water shifting 
its absorption band (Begley, Lanza, Norris, & Hruschka, 1984), which 
likely means that not all the amount can be detected and predicted. 

Overall, RPD is more restrictive than R2
CV and imposes stricter limits 

to define the goodness of a prediction model, thus according to Williams 
(2014) our results indicated that calibrations were not accurate enough 
for quality control in industry even if they could be applicable for a 
rough screening and several models (moisture, fat, SF, SFA, MUFA, 
palmitic, oleic, and palmitoleic acids, Cu, and Fe) could be used for a 
quantitative estimation, which may be useful for consumers. The linear 
regression of measured versus predicted values for the main traits with 
the best prediction eqs. (2 < RPD < 2.4) are represented in Fig. 3 and 
may be applicable for rough consumer screening (Williams, 2014). 
Therefore, an increase of the number of samples may result in more 
robust and accurate calibrations. 

Table 6 
Goodness of fit statistics of modified partial least squares regression models in leave-one-out cross-validation for beef major and trace minerals developed using pocket- 
size handheld NIR spectrometer on intact samples (n = 80).  

Minerals Scatter correctiona Mathb LFc nd outliers SEC
e R2

C
f SECV

g R2
CV

h RPDi 

Major minerals, mg/kg           
Ca Dj 1,8,8,1 8 80 7 11.79 0.47 15.48 0.06 1.04 
K MSCk 1,4,4,1 8 80 13 107.85 0.76 141.40 0.58 1.56 
Mg D 0,0,1,1 3 80 3 7.22 0.47 7.79 0.38 1.28 
Na None 1,4,4,1 7 80 3 23.91 0.53 29.18 0.29 1.19 
P MSC 1,4,4,1 3 80 4 61.38 0.45 66.77 0.35 1.24 
S SNV + D 1,8,8,1 8 80 2 65.12 0.43 76.52 0.20 1.13 
Trace minerals, μg/kg           
B MSC 2,10,10,1 3 73 2 24.32 0.39 28.19 0.17 1.10 
Ba SNV + D 2,5,5,1 8 52 2 10.68 0.79 21.39 0.12 1.08 
Cr SNV + D 2,10,10,1 1 59 4 13.71 0.24 14.55 0.13 1.08 
Cu D 2,10,10,1 6 80 5 2408.75 0.85 3060.25 0.76 2.04 
Fe SNVl 2,5,5,1 5 80 4 635.88 0.91 830.31 0.85 2.58 
Mn SNV + D 1,4,4,1 6 80 4 9.83 0.56 11.95 0.34 1.24 
Zn D 2,5,5,1 3 80 2 4434.62 0.37 5084.69 0.16 1.10 
Si None 2,10,10,1 6 80 7 414.01 0.54 528.84 0.25 1.16 
Sr None 2,5,5,1 3 60 2 7.89 0.39 9.48 0.11 1.07 
Ti None 1,4,4,1 8 65 7 30.79 0.52 39.42 0.20 1.13 

. 
a Scatter correction = pre-processing technique to reduce noise; bMath = mathematical treatment (first digit indicates the derivative treatment); cLF = number of 

modified partial least squares latent factors used to develop the calibration model; dn = number of samples above the limit of detection; eSEC = standard error of 
calibration; fR2

C = coefficient of determination of calibration; gSECV = standard error of cross-validation; hR2
CV = coefficient of determination of cross-validation; iRPD 

= residual prediction deviation calculated as SD after outliers' removal/SECV; jMSC = multiplicative scatter correction; kSNV = standard normal variate; lD =
detrending. 
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Fig. 3. Linear regression plots of measured versus predicted values (‘as is’) for (a) moisture, %; (b) fat, %; (c) shear force, N/g; (d) SFA, mg/100 g; (e) MUFA, mg/ 
100 g. 
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4. Conclusion 

The present study suggests that the pocket-size handheld NIR in
strument can somewhat successfully predict chemical parameters such 
as moisture and fat and some of the quality traits of intact beef muscles 
such as a*, b*, SF, and purge loss. This ability could be useful to predict 
beef quality using a rapid on-line system at the retail level to assess traits 
that could influence the acceptability of the product by the consumer, 
and at consumer level allowing them to influence their dietary choices. 
Among FAs, the results showed the applicability of the miniaturized 
device to make predictions with good accuracy and thus perform a 
quantitative estimation of SFA, MUFA, palmitic and oleic acids pro
portions. This ability could be used to evaluate the levels of nutritional 
parameters which are strictly connected to cardiovascular risk or health 
benefits and therefore this might allow to obtain quickly and at low cost 
additional information to be reported on the label while keeping the 
product intact and avoiding sampling and loss of products. Iron and Cu 
were the only minerals for which it was possible to develop adequate 
prediction models to be used in practice although in general the accu
racy was not adequate for a secure quality control. Lastly, due to the low 
content of many considered parameters, the narrow working range of 
the instrument in the near-infrared region, and the inherent difficulty of 
the technology used in predicting inorganic elements such as minerals, 
the instrument could be considered as a consumer-grade tool although at 
this stage it is not applicable at industry level because of insufficient 
accuracy, and in any case, it would be advisable to carry out further 
studies expanding the number of analyzed samples. 
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Prieto, N., Andrés, S., Giráldez, F. J., Mantecón, A. R., & Lavín, P. (2006). Potential use of 
near infrared reflectance spectroscopy (NIRS) for the estimation of chemical 
composition of oxen meat samples. Meat Science, 74(3), 487–496. https://doi.org/ 
10.1016/j.meatsci.2006.04.030 
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